IR Spectroscopy

Electromagnetic radiation has dual wave/particle properties. A
photon is the particle of electromagnetic radiation. In a vacuum
a photon travels at constant velocity ¢ = 2.998 x 108 m s'1. The
velocity is related to the frequency, v, and wavelength, A:

C=Av

The energy of a photon is proportional to its frequency, v. The
proportionality constant is Planck’s constant, h = 6.626 x 1034

Js:
hc/A

E = hv

Photons with wavelengths from 100 nm to 800nm (frequency
from 3.75 x 10 st to 3.00 x 10*° s1) are sufficiently energetic
to cause electronic transitions in molecules or atoms. These
guantized transitions give information about atomic or molecular
structure. The branch of spectroscopy known as electronic
absorption spectroscopy Is often called UV-VIS spectroscopy.



Less energetic radiation causes vibrational transitions within
molecules. This vibrational motion is also quantized. Photons of
wavelength from ca. 1000 nm to 30,000 nm cause these
transitions. This infrared (IR) radiation is of longer wavelength
(lower frequency) than visible red radiation. The practical range
for infrared spectroscopy of organic compounds is about 2500
nm to 20,000 nm.

Frequency is more commonly used as a measurement in IR
spectroscopy. The wavenumber (Vv expressed in units of cm)
IS the standard frequency measure in IR spectroscopy:

v (cm?t)=1/A(cm)=v (st)/c (cm si)

v is the frequency, v, divided by the speed of light in units of
cm st. The practical range of IR spectroscopy expressed in this
unit is 4000 cm to 500 cm-L.



A typical IR spectrum is presented as % transmittance vs. v,
with higher frequency (higher energy) to the left:
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Functional groups such as OH or C=0 tend to absorb radiation
In a narrow frequency range in any compound in which they are
found. These ranges are called functional group frequencies. A
table of group frequencies has been provided for you. For
organic compounds the functional group range lies between ca.
4000 to 1000 cm-.

The carbonyl stretching frequency Is very important because
there are many classes of compounds that have this group. You
can identify which class by a detailed knowledge of how
structural variations such as ring size and Tr-conjugation affect
the frequency of absorption.

All distinct compounds afford unique IR spectra. A particularly
useful part of the IR frequency range for establishing unigue
identity is the range from ca. 1500 cm to 500 cm. There is
some overlap with the functional group range. This frequency
range is called the fingerprint region because it appears that all
compounds have a unique absorption spectrum in this region.



The carbonyl group in IR spectroscopy

The carbonyl group (C=0) occurs in a large number of organic
compounds (ketones, aldehydes, carboxylic acids, and their
ester, amide, anhydride, acid chloride, and thioester
derivatives). IR spectroscopy is very useful for identifying
these compounds because the carbonyl stretching band is
very intense, and is located in a part of the IR spectrum (ca.
1650-1850 cm?) where there is very little interference from
other functional groups. The characteristic carbonyl absorption
frequency Is sensitive to the type of carbonyl compound, and
to ring size and w-conjugation effects, so it is very often
possible to make an identification of the specific type of
carbonyl compound from an investigation of its IR spectrum.
On the next few pages we will examine the carbonyl
absorption band in a number of common carbonyl containing
functional groups.



Ketones

Aliphatic ketone: (1710 + 10) cm strong, sharp band
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Conjugation
m-conjugation reduces the carbonyl absorption band frequency
by ca. 30 cm in ketones and other carbonyl compounds
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Ring size effects

Decreasing ring size (< 6 member ring) increases C=0

stretching frequency: Cyclohexanone 1710 cm?

Cyclopentanone 1747 cmt Cyclobutanone 1783 cm™
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Aldehydes
Aliphatic aldehyde: 1725 + 10 cm-! strong, sharp band
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Carboxylic Acids

Aliphatic acid: (1710 £+ 10) cm™!
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Esters

Aliphatic ester: 1740 £ 10 cm™?
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Amides
Aliphatic amide: (1660 + 10) cm-?

A secondary amide:
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A primary amide:
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A tertiary amide:
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Anhydrides
Aliphatic anhydride: 1820, 1760 cm (two bands)
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Acid Chlorides
Aliphatic acid chloride: (1820 + 10) cm-?
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Other easily detected functional groups
Alcohols, ROH
OH stretch 3200 - 3600 cm strong, often broad

OH bend 1050 - 1200 cm strong, frequency increases in
order 1°, 2°, 3°, phenol

C-O stretch 1260 - 1410 cm™

Nitriles RCN

C=N stretch 2210-2260 cm™1 medium intensity, sharp
Alkynes RC=CR

C=C stretch 2100 — 2260 cm-? variable intensity, sharp
=C-H stretch 3300 cm- strong, terminal alkynes only



USING A MOLECULAR FORMULA AND SPECTROSCOPIC
DATA TO SOLVE STRUCTURAL PROBLEMS

EMPIRICAL FORMULA: obtained from whole number ratio of
elements in a particular molecule.

Example: C;H,O

The empirical formula is determined as shown below from
guantitative elemental analysis data usually expressed as a
weight% of each element present:

Convert to whole number ratios:
62.04% C/12.01= 5.17 5.17/1.72 =3.01=3
10.42% H/1.008 =10.34 10.34/1.72=6.01 =6
27.55% 0/16.00 =1.72 1.72/1.712= 1



MOLECULAR FORMULA: the formula that expresses the
number of moles of each element in a mole of the molecule.

The Empirical Formula is not the Molecular Formula. Any
multiple of the empirical formula would also give the same
elemental analysis:

Possible Molecular Formulae for this example:

C,H,O C,H.,0, C H;50, C,,H,,0, etc.
Corresponding (Whole Number) Molecular Mass:

58 116 174 232

To determine the molecular formula it is also necessary to
know the molecular mass (mass spectrometry provides this
iInformation). In the present example, if the molecular mass is
116, the molecular formula must be:

Cs,H,,0, twice the empirical formula.



Index of Hydrogen Deficiency or Index of Unsaturation (I):
Defined for formula a,3,y,,0

|=IV-=I1/2+1ll/2 +1

Where:

a = all elements of valence 1 (H, D, halogens)

B = all elements of valence 2 (O, S, etc.)

y = all elements of valence 3 (N, P, etc.)

O = all elements of valence 4 (C, Si, etc.)

The Index of Unsaturation provides the number of double bonds
or double bond equivalents in the molecule:

C=C, C=0, | =1, One saturated ring (cyclohexane, etc.), 1 =1
C=C, C=N, | =2, One benzenering, | =4



A value of | = 2 would mean that the structure has 2 double
bonds, or one double bond and one ring, or two rings, or one
triple bond. A structure with one double bond and one triple
bond, for example, would be impossible for a molecular formula
with | = 2, because the double bond and triple bond would
require | = 3.

In the present case of C.H,,0.:

| =6 —12/2 +1 = 1 (Note that oxygens and other divalent atoms
do not enter into the equation).

Some possible structures consistent with the formula:

1 oH OH
\)I\O/\/ /\O/><
SR
/\/\)I\OH OH Z 00 ©

OH



Once you have the molecular formula and an IR spectrum you

A.

can solve structural problems using the following algorithm:

Calculate the Index of Unsaturation for the molecular
formula. All structures must be consistent with the Index you
have calculated.

. Use the formula and Index to eliminate classes of

compounds. For example, if the formula includes one O, all
classes of compounds containing two O (such as esters or
carboxylic acids) can be eliminated. If | =0, your compound
has no multiple bonds and no rings.

. Use the IR data to establish the presence (or absence) of

relatively easily established functional groups such as C=0
(try to distinguish the type of carbonyl compound), C=C
(careful, often weak), aromatic rings, C=C (careful, often
weak), C=N, OH and/or NH or NH,(molecular formula can
help you distinguish these).



D. Draw provisional structures that contain the functional
group(s) and that are consistent with the molecular formula
and index of unsaturation. Start by drawing the functional
groups, subtract those atoms from the molecular formula,
and use the remaining atoms to form connections. Isomers
of the structures you draw containing the same functional
groups are also possible structures.

E. Go back to the IR to look for evidence of less readily
observed functional groups (C-N, C-O, NO, etc.) if any of
your provisional structures contain these. Look in the C-H
region for C-H stretches of the frequency range required for
the structure(s) you have drawn. Look for evidence you may
have missed the first time for other functional groups if they
appear in your provisional structures. C=C and C=C are
easy to miss in symmetric cases (they actually disappear in
completely symmetric molecules). Rings have the same
effect on the molecular formula as do multiple bonds.



F. Refine/eliminate structures based on your re-examination of
the IR data. With only a molecular formula and an IR
spectrum it will rarely be possible to determine a unigue
structure. You will probably find yourself with a series of
Isomers containing the same functional group(s). NMR data
discussed later this semester will allow you to readily
distinguish isomers.

In our example of C;H,,0O, we already know that | = 1,
Indicating one double bond or one ring. If your IR data
iIncluded strong sharp peaks at 1745 cm* and 1240 cm, and
no evidence of OH, you could confidently conclude that your
compound is a saturated ester. This would still leave you with
a significant number of possible structures, though:

@) O O
HJ\O/\/\/ \H/O\/\/ \)J\O/\/ \/\H/O\/ \/\)LO/
0 O

This only includes unbranched isomers.



Some possible isomers with branched structures:

Koy PN o S

This Is not a complete list of possible structures. We will
be able to readily distinguish these structures by analysis
of NMR spectra.



This week’s experiment

Part 1: analysis of characteristic functional group
frequencies found in spectra of known compounds
performed in groups of 4 students.

Part 2: identification of an unknown from its IR spectrum
performed individually.

As always, the notebook entries and answers to the end of
lab questions are prepared individually. Students may
discuss questions posed during the experiment in Part 1
within the group.

Students turn in notebook pages with answers to questions
as a summary report. A copy of the IR spectrum of the
unknown must be permanently attached to the
notebook, and submitted as part of the summary report.
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